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In this paper, we present evidence to show that a smoothly evolving zero-surface 
tension solution of the Hele-Shaw equations can be singularly perturbed by the 
presence of arbitrarily small non-zero surface tension in order-one time. These effects 
are explained by the impact of ‘daughter singularities’ on the physical interface, 
whose formation was suggested in a prior paper (Tanveer 1993). For the case of 
finger motion in a channel, it is seen that the daughter singularity effect is strong 
enough to produce the transition from a finger of arbitrary width to one with the 
selected steady-state width in O( 1) time. 

1. Introduction 
The penetration of a gas into a viscous fluid in a Hele-Shaw cell is the simplest 

member of a class of related pattern formation problems that include dendritic 
crystal growth, directional solidification, and electro-deposition. For Hele-Shaw flow 
in a channel, a steadily advancing flat interface is unstable to perturbations when 
driven by the gas. The perturbations grow into fingers which then exhibit several 
interesting features ; these include side-branching and fingertip splitting, followed by 
multiple finger formation and competition. Recently there has been much progress 
in understanding the structure and linear stability of steady finger solutions in the 
presence of surface tension. Some of the newer developments in this area are reviewed 
by Peke (1988), Kessler, Koplik & Levine (1988), Howison (1991), and Tanveer (1991) 
from a range of different perspectives. Earlier work is summarized by Saffman (1986), 
Bensimon et al. (1986), and Homsy (1987). 

Most of the work in the initial value problem for non-zero surface tension has 
been numerical in nature. For channel flow, DeGregoria & Schwartz (1985, 1986) 
find that a finger of air propagating into the fluid spontaneously splits when surface 
tension is sufficiently small. Bensimon (1986) and Dai & Shelley (1994) show that 
there is great sensitivity to the level of precision in numerical calculations for small 
values of the surface tension coefficient. Their results provide numerical evidence 
supporting arguments (Bensimon 1986) that the size of the perturbation triggering 
the tip-splitting instability decreases quickly with decreasing surface tension. Other 
numerical studies are given by Tryggvason & Aref (1983, 1985) and Meiburg & 
Homsy (1988). Experimental observations show that, in the limit of small capillary 
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effects, even noise can be large enough to set off a pattern of continual tip-splitting 
and finger competition (Maxworthy 1987; Arneodo et al. 1989). 

The numerical methods produce results qualitatively similar to experimental re- 
sults. In particular, for small enough surface tension the sensitivity to the level of 
‘noise’ produces a random pattern of fingers undergoing tip-splitting followed by 
competition. Despite this unpredictability, Arneodo et al. (1989) observe a remark- 
able connection between statistical properties of the highly irregular time-dependent 
pattern and the steady-state finger. Unfortunately, numerical work has yet to provide 
a clear understanding of such phenomena or of the asymptotic trends in the limit 
as surface tension tends to zero. Ideally, one would like to be able to theoretically 
predict the scaling dependence of the complicated interfacial pattern on the surface 
tension parameter. 

Analytical work for non-zero surface tension is scarce ; a local existence result has 
been obtained by Duchon & Robert (1984), and a global in time result (for flow 
in a radial geometry with small initial perturbations) by Constantin & Pugh (1993). 
When surface tension is exactly zero, the mathematical problem simplifies to a great 
degree because of the absence of the curvature term. There has been quite a bit of 
analytical work in this case. Exact solutions and solution methods were discovered 
by researchers in Russia (Galin 1945; Polubarinova-Kochina 1945) for a class of 
initial conditions. Without knowledge of these methods, other solutions were found 
that can be seen to follow from their general procedure (see for instance Saffman; 
1959, Howison 1985, 19864 b ;  Richardson 1972; Shraiman & Bensimon 1985). The 
class of known exact solutions has been used by Howison (1986) to demonstrate the 
ill-posedness of the initial value problem for the interface; it is possible to choose 
two initial conditions which are arbitrarily close in any Sobolev norm (defined on the 
physical interface), yet which differ by O(  1) over a time which can be made arbitrarily 
small. 

These theoretical results are often described in terms of a conformal map z ( i , t )  
that takes the interior of a unit circle in the [-plane to the physical flow domain; the 
unit circle itself is mapped to the free surface. The conformal map must be analytic 
inside the unit disk, aside from a fixed singularity at 5 = 0 (required due to the 
infinite extent of the fluid region), but it may have singularities and zeros outside it. 
These can move toward the boundary of the unit disk and reach it in finite time, at 
which point a singularity appears on the interface. The origin of ill-posedness, then, 
is that small perturbations on the interface can introduce a zero or a singularity in zc 
outside the unit disk, which subsequently impinges on it quickly. Following the work 
of Richardson (1972) and Lacey (1982), Tanveer (1993) showed that all singularities 
will move towards the unit disk, while preserving their type. 

The ill-posedness of the zero-surface-tension problem makes it difficult to un- 
derstand the effect of small non-zero surface tension. A perturbative study of the 
interfacial motion is accompanied by severe mathematical difficulties. If YPo(t) is the 
solution operator that maps an initial condition into the zero-surface-tension solution 
at a time t, then the ill-posedness of the zero surface tension problem implies that Yo 
is unbounded with respect to any norm defined on the physical interface. Thus there 
is no a priori reason to expect that the solution operator Y(t) for non-zero surface 
tension will approach Yo(t) in the small surface tension limit. 

Recently, one of us (Tanveer 1993) has suggested a way to avoid these mathematical 
difficulties by imbedding the zero-surface-tension problem in a well-posed problem. 
This can be done by analytically extending the initial value problem for z (5 , t )  into 
the region exterior to the unit disk. When data are specified in > 1 (say, with 
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z ( l ,O)  given in closed form) the initial value problem is well-posed, and the interface 
evolves without sensitivity to initial conditions. This extension is the basis of a recent 
(Baker, Siege1 & Tanveer 1995) numerical method through which solution of the 
zero-surface-tension initial value problem can be computed in a well-posed manner. 

Here, we consider the effect of small non-zero surface tension on the evolution of 
initial data z ( l ,  0) specified in the extended complex plane. The well-posed formulation 
of the zero-surface-tension problem allows the effects of small surface tension on 
prescribed initial data in I[\ 3 1 to be treated perturbatively. More precisely, in the 
extended domain one can consider a perturbation expansion of the form 

z - zo + BZl + . . ' 
where B is an appropriate dimensionless surface tension parameter. It turns out that, 
for early times, surface tension is a regular perturbation except in the neighbourhood 
of initial zeros and certain singularities of zc. Tanveer (1993) has performed an 
asymptotic study of the effect of small surface tension on initial zeros of zc as well as 
on isolated singularities in the initial data of the form 

Z c ( l , O )  - A(O)(l - ls(O))-!  B > 0 (2) 

for lls(0)l > 1. Interestingly, it is found that initial singularities with in the interval (0, 
4/3) and initial zeros are transformed into clusters of -4/3 singularities. In contrast, 
when B = 0 the singularities and zeros preserve their form. All singularities approach 
the physical domain 151 = 1, and many of them eventually create large deformations 
of the interface. 

One of the most interesting phenomena predicted in the asymptotic study is the 
presence of singularities of z at points in the extended domain where zo(l ,  t ) ,  the 
corresponding zero-surface-tension solution, is a perfectly well-behaved function. 
These singularities are formed in clusters which remain intact until they come very 
close to the physical domain I l l  = 1. Each cluster is centred at a point, denoted by [ d ( t )  

and referred to as a 'daughter singularity', where the regular perturbation expansion 
(1) breaks down, even though ZO[( (d , t )  is neither singular nor zero. Based on some 
assumptions, it was shown that there is an O ( B ' / 3 )  sized region around each point 
( d ( t )  where surface tension effects play a singular role. In particular, zc deviates from 
zoi by O( 1) in this region. Each daughter singularity initially coincides with a zero of 
zoi ; nonetheless, at later times the daughter singularity and zero move apart. As with 
all singularities, the daughter singularities move toward the physical domain l[l = 1. 
This raises the interesting possibility that significant differences between the B = 0 
and 0 < B Q 1 interfacial shapes could occur even when no zeros or singularities of 
zoi are near I l l  = 1. 

Unfortunately, the previous asymptotic results are restricted to times for which 
l i d1  - 1 + B'/3, when the daughter singularity is still too far from = 1 to have a 
noticeable effect on the interface. In this paper, we address the influence of daughter 
singularities beyond this stage, when their effects are actually felt on the physical 
interface. Our study is by two complementary approaches: an asymptotic theory 
which is an extension of Tanveer's results to the time when l&(t)l - 1 = O(B1/3), 
and a set of numerical solutions for the full equations. The numerics enable us to 
directly observe the consequences of the daughter singularities as they approach the 
physical domain, and to corroborate many of the analytically predicted scalings. 
This numerical confirmation is particularly important, since the asymptotics rely on 
several assumptions about the nature of the complex domain solution that are yet to 
be verified directly. 
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Our results show that arbitrarily small surface tension can be important over O( 1) 
times, even when the curvature predicted by the zero-surface-tension solution is not 
large. From a physical standpoint, this conclusion may appear surprising, since the 
magnitude of the surface tension term in the equations of motion is proportional 
to the curvature. However, there is a danger in attaching physical intuition to the 
zero-surface-tension problem owing to its ill-posedness in the physical domain. In 
fact, the actual curvature need not be close to that predicted by the corresponding 
zero-surface-tension solution, even when such solutions are smooth. 

The daughter singularities do not always influence the physical interface in 0(1) 
time. Their effects are sometimes shielded or deferred by the presence of other 
singularities. In a general way, we develop an understanding of when and where 
daughter singularity effects will be felt on the physical interface by considering a 
number of different initial conditions for the radial as well as channel geometries. 
A preliminary report on our results for the channel geometry appears in Siegel 
& Tanveer (1996); this paper presents much more comprehensive analytical and 
numerical results, for both the radial and channel geometries. 

This paper is arranged as follows. In $2, we present the governing equations for 
Hele-Shaw flow. We also discuss the formation of daughter singularities by examining 
the breakdown of a regular perturbation expansion in B near a zero of zc. For 
concreteness, in $3 we present several exact zero-surface-tension solutions containing 
zeros of zc. These will be used as initial data in simulations for non-zero B ,  performed 
in a later section. Inner equations valid in a neighbourhood of [ d ( t )  are summarized 
in $4. These equations are extended to the time when daughter singularity effects 
are felt on the physical domain. In $5, we present numerical simulations of Hele- 
Shaw evolution for a set of decreasing B. The calculations are reconciled with the 
analytically predicted scalings. 

2. Governing equations 
In this section we present the equations which govern interfacial flow in a Hele-Shaw 

cell, and examine their analytic continuation in the complex plane. We will follow 
closely the formulation of Tanveer (1993). We also consider a regular perturbation 
expansion in the surface tension parameter B,  and discuss the points where this 
expansion breaks down. It is in a neighbourhood of these points where the singular 
effects of surface tension initially occur. 

Consider first Hele-Shaw flow in a radial geometry (figure la), in which air of 
negligible viscosity displaces a viscous incompressible liquid. Introduce the conformal 
map z([,t) which takes the interior of a unit circle in the [-plane into the viscous 
fluid region of the z-plane ( z  = x + iy), such that 5 = 0 is mapped to infinity. This 
map can be decomposed as 

Inside the unit circle, f([,t) must be analytic and zc # 0. For analytic boundary 
shapes, as assumed here, these conditions hold in an open set which contains the unit 
disk. We also require a(t) to be real and positive. This is always possible in view of 
the remaining degree of freedom allowed by the Riemann mapping theorem. 

For flow in the channel geometry, we analogously define a conformal map from 
the unit semicircle in the [-plane figure to the fluid region of the z-plane (figure lb). 
The circular arc l[l = 1 is mapped to the interface, and the diameter is mapped to 
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FIGURE 1. (a) Hele-Shaw flow in the radial geometry. ( b )  Flow in the channel geometry. The unit 
semicircle in the [-plane is mapped onto the viscous fluid region of the channel, with the circular 
arc being mapped to the interface. The points A, B, and C in the [-plane are mapped to the 
corresponding points in the channel. 

the channel walls. The functional form of the conformal map is given by 

2 
z( i ,  t )  = -- In i' + i + f ( i ,  t )  

71 
(4) 

where we set the channel half-width w = 1; this is equivalent to non-dimensionalizing 
lengths by w. The requirement that z maps the diameter of the semicircle to the 
channel walls implies that Im f = 0 on the diameter. We assume that the shape of 
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the extended finger obtained by reflection about each of the two sidewalls is smooth, 
entailing that f is analytic and zl # 0 in an open set containing the unit semicircle. 
The Schwartz reflection principle then implies that f is analytic and z5 # 0 for < 1. 

In either of these geometries, the fluid velocity u, averaged across the plate gap, 
satisfies Darcy’s law 

b2 
u = --vp 

where p is the viscosity, b is the plate gap, and p is the pressure (here considered 
as a function of x and y ) .  Thus (-b2/12p)p provides a velocity potential 4. Incom- 
pressibility implies the existence of a stream function y. We can therefore introduce 
a complex potential W ( z ,  t )  = 4 + iy  which is an analytic function of z in the fluid 
region. Considered as a function of i, this potential is decomposed as 

12P 

-Q 
W(<,  t )  = In i + i + w(i, t )  

where w is assumed to be analytic in /[I < 1. In the channel geometry, Q = 4 in order 
that the fluid velocity V far ahead of the finger equals unity. This is equivalent to 
normalizing fluid velocities by V .  For the radial geometry, Q is the injection rate of 
air and will be taken as 271. Furthermore, in ( 3 )  we choose a(0) = 1. Together with 
the value of Q, this makes our variables effectively dimensionless. 

The interface conditions determine the evolution of the map z(<,  t).  The kinematic 
condition states that the motion of the interface in the normal direction is the same as 
the normal component of fluid velocity. For both the radial and channel geometries, 
this translates into 

on I [ \  = 1. The dynamic boundary condition (McLean & Saffman 1981) asserts 
that the pressure difference between the two sides of the interface is balanced by 
the product of surface tension and curvature. In either geometry, this statement 
corresponds to the condition 

-B 
R e w = - R e  

lzr I (7) 

on 151 = 1. Here B is a dimensionless surface tension parameter given by B = 

b2T/(12pVw2) in the channel geometry and B = 2nb2T/(12pQa(0)) in the radial 
geometry, where T is the surface tension.? 

We note in passing that the boundary conditions (6) and (7) are simplified limits of 
much more complicated boundary conditions (Park & Homsy 1985; Reinelt 1987a) 
that account for the three-dimensional effects of a thin film left on the cell plates by 
the advancing interface. Studies of the more realistic boundary conditions in steady 
(Reinelt 198727; Sarkar & Jasnow 1987; Schwartz & Degregoria 1987; Tanveer 1990) 
and time dependent (Tanveer 1995) flow show that, in many cases, the thin-film effects 
do not alter the qualitative features of the dynamics. 

Equations (6) and (7) can be reformulated into a more convenient form for the 
purpose of numerical calculations. If we define Z(v, t )  = z(eiv, t ) ,  then it is easy to see 
using using well-known relations between the real and imaginary parts of an analytic 

Tanveer (1993) uses B = b2T/(3pQa(0)) and Q = 4 for the radial geometry. 
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function on the unit disk that (6) and (7 )  are equivalent to 

Z ,  = (H + i Y ) Z v  (8) 

where 

Y ( v , t ) =  ~ Q [1-$1mm, 1 , 
24ZVl2 

dv’ cot (v’ - v )  Y (v’, t ) ,  
2Tc j (9) 

Note that H and Im ov are just the (periodic) Hilbert transform of Y and of the 
derivative of the curvature, respectively; PV denotes principal value integral. 

As explained in $1, to carry out the asymptotic calculations it is necessary to 
analytically continue the equations of motion to > 1. As a first step, we obtain 
the continuation of equations (6 )  and (7)  into the domain < 1. This is done by 
employing the Poisson integral formula. In particular we use a variant of the standard 
formula which gives the value of an analytic function in the domain l i l  < 1 in terms 
of its real part evaluated on the unit circle. Using (6 ) ,  this formula can be applied to 
the function z t / ( i z ~ )  to yield (with appropriate choice of imaginary constant) 

for < 1, where 

~ 

Here the tilde is defined such that on = 1, P ( i )  = F ( t ) ,  where F is a function 
analytic in a neighbourhood of the unit circle, and the overbar denotes complex 
conjugate. Thus, F(l/[) is the analytic extension of F(i) off = 1. Note that if F 
is real on the real c-axis in the interval (-1, l), then F = F .  This is the case for 
the function zc in the channel geometry, as well as for the symmetric radial solutions 
considered in this paper. Poisson’s integral formula can be similarly applied to o 
using (7), with the result that for i l l  < 1 

0 = -B J ( i , t ) ,  (12) 

where 

The choice of branch for the 1/2 power terms appearing in (13) should be consistent 
with the equality Jzcl = zr (l/i) on i = el”. 

Equations (10)-(13) can now be analytically continued into the domain > 1 
by deforming the contour in the [’-plane in the usual way, producing an additional 
term from the residue of the pole at i. (Note that analytic continuation to = 1 

112 112 
PI 
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provides an alternative way to get (8), (9)). This leads to the following nonlinear 
integro-differential equation for z in the domain > 1: 

Zt = q1q + q2 + B(2q7(zi)G1’2 + r ) ,  (14) 

where 

and 

The precise form of 43-45 is not crucial here; expressions for these terms are given 
on p. 166 of Tanveer (1993). The non-consecutive numbering of the qi terms in (14) 
is used to conform to the notation used there. 

In (14) we have singled out the surface tension term Bq7(zc)G1/2, since this will 
be the most singular component of the equation for z in the neighbourhood of 
a zero of zi([,O). The function Y contains surface tension terms which are less 
singular in this neighbourhood. We note for future reference that functions such 
as r ( r , t ) ,J( i , t ) ,&r( l /c , t )  and @“(l/C,t) are analytic in I [ \  > 1. Since the functions 
q1((, t)-q7([, t )  depend only on these terms and their derivatives, they too are analytic 
in the region l [ l  > 1 (except possibly at infinity). 

Despite its complicated appearance, equation (14) is preferable for asymptotic 
studies of the effects of small surface tension. The reason is that the leading-order 
equation zt = q1zc + q2 is well-posed in > 1. (Tanveer 1993 provides analytical 
evidence for the well-posedness of this equation, whereas computational evidence is 
presented in Baker et al. 1995.) In contrast, the leading-order equation of the problem 
formulated in < 1 is ill-posed (Howison 1986b; Tanveer 1993). 

2.1. Outer perturbation expansion in powers of B 
The well-posedness of the zero-surface-tension problem in the extended domain > 1 
allows the small-surface-tension problem 0 < B 4 1 to be studied perturbatively. This 
study has been initiated by Tanveer (1993), who examined the behaviour of the terms 
in an asymptotic expansion for z of the form (1) with initial data 

Since the results are relevant in the present study, we summarize them here. 
Upon substituting the expansion (1) into the evolution equation (14), it is seen 

that zo is simply the zero-surface-tension solution, while the equations for z l ,  z2, ... 
contain singular forcing terms at points where zog is either singular or zero. The 
expansion (1) can break down at these points; in particular, this occurs near zeros 
and pole singularities in zoi (these kinds of singularities are present in the initial data 
considered in 93). Formal asymptotic analysis suggests that the presence of surface 
tension modifies the singularity structure in inner regions near such points. However, 
in the case of pole singularities the modifications are restricted to a small (0(B2I3) )  
neighbourhood of the zero-surface-tension singularity, so that, in an outer asymptotic 
sense, the zero-surface-tension behavior is still relevant, i.e. z5 N A ( t ) / ( i  - Cs) for 
B2/3 4 I[ - [,I 4 1. Since it is known that pole singularities do not impinge on the 
unit circle in finite time when B = 0 (see Howison 1991), the modifications due to 
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small surface tension will not be felt by the physical interface in O( 1) times. Similar 
statements can be made about initial singularities of the form (2) with p > 1/2. 

The situation is markedly different for initial zeros in ze. Consider a simple zero in 
zi(5,O) of the form 

with llo(0)l > 1. For early enough times, the first-order term z1 in a neighbourhood 
of lo(t) takes the form 

ze(5,O) "5 - iO(0)) (18) 

with Ao(0) + Al(0) = 0. In (19), ( d ( t )  satisfies 

4 d W  = -qlo(5d(t), t ) ;  i d @ )  = lO(0) (20) 

where a subscript 0 on any qi denotes its evaluation using the corresponding B = 0 
solution. The first term on the right-hand side of (19) balances the most singular 
forcing term 2 q70(z~c)i1'2 in the equation for z1, and the second term is a solution of 
the homogeneous equation for z1 and is required to satisfy the initial condition (17). 

The singularity [ d ( t )  is termed a daughter singularity, even though it is not an actual 
singularity of z but rather of zl, z2, etc. The inner asymptotic analysis of Tanveer 
(1993) (summarized and extended in $4) suggests that, under some assumptions, 
a localized inner structure consisting of a cluster of -4/3 singularities resides in 
a neighborhood of each of [ d ( t )  and [ ~ ( t ) .  (Evidence presented later in this paper 
suggests that, at the time when lcdl  - 1 = O(B1l3), the cluster about [ d ( t )  begins to 
disperse.) The important feature here is that the motion of [d(t), as specified by (20), 
is different from the motion of &,(t), which is easily seen to be given by 

This raises the possibility that zc can differ significantly from zoc as B + 0, even at 
points where Z O ~  is neither singular nor zero. In the following sections we examine 
this possibility in detail, through a comparison of asymptotic results and numerical 
computations. 

3. Initial conditions and exact solutions for B = 0 
We shall consider the effect of small non-zero B on a class of exact zero-surface- 

tension solutions for which zc has a simple distribution of zeros and/or poles. 
The existence of exact solutions for B = 0 enables us to easily compare the zero- 
and non-zero-surface tension evolutions in numerical simulations and to check the 
asymptotically predicted scalings. Although the asymptotic analysis of Tanveer (1993) 
is quite general and can be applied to initial conditions for which there are no known 
exact B = 0 solutions (such as data zc(5,O) with branch point singularities of the form 
(2)) it is clearly preferable to use data for which exact solutions already exist. We 
have found that many of the salient singular perturbation effects of surface tension 
appear even for this restricted class of initial data. 

For the radial geometry, we consider initial data corresponding to the following 
exact B = 0 solution (Shraiman & Bensimon 1985): 
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tO(0) t d  t ,  

1.2 0.0463 0.3302 
1.6 0.4455 3.709 
2.0 1.101 15.50 
2.4 1.949 47.28 
2.8 2.970 119.97 

TABLE 1. Comparison of the times t d  and t ,  at which t,(t) and tO(t), respectively, reach the unit 
disk. The times are obtained by integrating (20) using the three-zero solution (22); we set A(0) = 1 
and consider various values of (o(0). 

Here A(0)  and [,(O) are real numbers satisfying A(0)  > 0 and l[o(O)l > 1. This 
solution has three-fold symmetry and has three zeros of zc outside the unit circle at 
positions where C3 = [;(O). Exact solutions also exist for generalizations of (22) to 
n-fold symmetry. From the expression (22), it is easily seen that the initial zeros of 
zc preserve their form but move to new locations given by [ = [ ~ ( t ) ,  [o(t)e2ni/3, and 
l ~ ( t ) e ~ ~ ' / ~ .  Since io( t )  monotonically approaches 1, the zeros move toward the unit 
disk. They impinge upon 151 = 1 at a time t = t,, where 

1 2 *  t ,  = [A(o)f;;(o) 0) - 1) 

When the zeros reach the unit disk, the solution becomes singular and the interface 
develops cusps at three symmetric points. The equations and solution fail to make 
sense for t > t,. For future reference, we note that expressions for q+, qh, and q70 are 
easily obtained by inserting the B = 0 solution (22) into (15); this gives 

where we recall that the additional subscript 0 on 41, q2 and q7 refers to the evaluation 
of these functions with z = zo and CL) = 0. 

For non-zero B, the surface tension term in (7) becomes large when the interface 
nears cusp formation. Indeed, B > 0 calculations by Dai, Kadanoff & Zhou (1991) 
(using initial data corresponding to (22), with zeros close to the unit disk) show that 
the cusp is replaced by a small bulb of air protruding into the fluid, although in their 
calculations B is not small enough for the asymptotic theory to hold. As B -+ 0, it 
might be surmised that capillary effects are not an important factor in the evolution 
until just before a cusp forms in the corresponding zero-surface-tension solution, 
zo. However, the analysis of $2.1 suggests otherwise. Daughter singularities to the 
outer perturbation expansion are created at the positions of the initial zeros. These 
subsequently move towards the physical domain at a rate given to the leading order 
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by (20), with ql0 given in (26). One can obtain a value for the theoretical daughter 
singularity impact time td by numerically integrating (20) up to the time at which 
[ d ( t )  = 1. We have performed this integration for various lo(0) (table 1) and find 
that <d(t) reaches the unit disk much sooner than C0(t). Thus, the daughter singularity 
clusters can have a significant effect on the interfacial evolution well before a zero 
of zot comes close to the unit disk, i.e. before the curvature in the zero-surface- 
tension solution is large. The detailed numerical computations given in $5 support the 
essential conclusions from asymptotics concerning the impact of daughter singularities 
and show the actual physical consequences of this impact. 

For the channel geometry, we consider initial data corresponding to a family of 
exact B = 0 solutions (Saffman 1959) which is written in our formulation as 

2 2 
z( i ,  t )  = i + d(t) - - In ( + -(1 - 1) In 

7l  .n 

where 1 < i,(O) < cc and 1 is a constant satisfying 0 < 1 < 1. The functions <,(t) and 
d ( t )  are determined by 

2 
l d - - ( l - l ) l n ~ , = t + K o ,  

(28) 
71 

2 2 
d + - l n l S + - ( 1 - 1 ) l n  

71 71 

where the constants KO and K1 depend on the values of ls(0) and d(0). This solution 
corresponds to a single finger of air which is symmetric about the centreline of the 
channel, and which propagates into the liquid. Simple pole singularities in zc are 
located at *is; these produce the protrusions of liquid into air which define the sides 
of the finger. As t ---f cc, it is easily seen that is + 1+ and d(t) N t/A and in this 
limit, one obtains a steady finger solution (Zhuravlev 1956; Saffman & Taylor 1958) 
of relative width 1, with tip speed 

When 0 < 1 < 1/2, a simple calculation based on (27) shows that the zeros of zt 
are located on the imaginary axis at 

whereas for 1/2 < 1 < 1, they are located on the real axis at 

further from I l l  = 1 than the singularities at +is. The motion of the zeros, given 
by (30), (31), is always directed toward the unit circle I l l  = 1. However, unlike the 
examples in the circular geometry, as t -+ cc the zeros settle down at positions a 
finite distance from I l l  = 1, i.e. &,(t + 00) = &i/(l - 21)'12 for 0 < 1 < 1/2, and 
lo(t + co) = &l/(l - 2A)1/2 for 1/2 < 1 < 1. In fact, the asymptotic positions of the 
zeros can be thought of as parameterizing the asymptotic width of the finger, with 
A =  1/2 when limt+m lo(t)  = cc. 
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For later use, we note that the insertion of the exact solution (27) into (15) gives 

It is easy to deduce from (20) and (32) that there is a fundamental difference in 
the motion of [ d ( t )  between cases where A > 1/2 and those where A < 1/2. In the 
first case, the daughter singularities + [ d ( t )  are on the real [-axis, but are further away 
from = 1 than the poles located at +[,(t). Since [,(t) approaches but never reaches 
1" = 1 in finite time, the daughter singularities + i d  never reach 151 = 1. In the second 
case, [ d ( t )  moves along the imaginary [-axis towards [ = i and will reach this point at 
a finite time t d .  The precise value of t d  for given and is(()) can be easily computed 
by numerically integrating (20) up to the time at which [ d ( t )  = 1. 

The effect of small non-zero B on this class of exact solutions is expected to be 
particularly interesting since the limiting steady-state finger cannot have an arbitrary 
width A. Instead, A must satisfy the selection criteria A = A,(B) (Shraiman 1986; 
Combescot et al. 1986, 1987; Hong & Langer 1986; Tanveer 1987; Dorsey & Martin 
1987), where A,(B) is given to leading order by 

The integer n parameterizes the family of solutions; the narrowest finger, which is the 
unique stable steady solution, corresponds to n = 0 and CO = 1.47 (Combescot et al. 
1987; Dorsey & Martin 1987; Tanveer 1987). The steady finger shapes are given to 
leading order by (27) in the limit t + GO, when the above values of 1, are substituted 
for the width I .  

An important issue in the dynamics is how the selected steady-state finger satisfying 
(34) is approached in time. More specifically, one would like to know how the 
transition time to the selected steady-state solution scales with B. In g5, we present 
evidence that this transition occurs in O(1) time as B + 0, as long as I < 1/2. On 
the surface this may appear surprising, since the curvature in the B = 0 problem is 
not large and therefore the surface tension term, when evaluated on the interface, 
is small. However, the O(1) transition time can be explained by considering the 
influence of the daughter singularity cluster as it approaches the physical domain in 
O( 1) time. 

4. Inner equations 
As was pointed out in $2.1, the perturbation expansion (1)  is invalid near a zero 

to of zoi and near any daughter singularities. In the general initial value problem, 
Tanveer (1993) has derived and analysed nonlinear equations which are valid in 
an inner region about [ ~ ( t ) ,  along with equations that are valid in an inner region 
about [ d ( t )  after it has separated from [ ~ ( t ) .  While the inner equations have not been 
explicitly solved, they provide us with important scaling information. In this section 
we summarize the analysis of Tanveer, and extend it to include late times when the 
daughter singularity effects are felt on the physical interface. 
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4.1. Inner equations near a zero of zc 
To obtain equations which are valid in the neighbourhood of a zero io(t), we introduce 
the inner variables 
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where 

q;i7(io(t), t)zii,’(io(t), t )  

q2;(io(Q> t )  
, k2(t) = 

d:7(i0(0, t )  

4;;; ( l o  ( t ) ,  t,Z$,’( i o  ( t ) ,  t )  
k l ( t )  = 

These scalings produce a dominant balance between the first four terms of equa- 
tion (14). The factors k l ( t ) ,  k2( t ) ,  Jot dt’ kl(t’)q20i(io(t’), t’)/k2(t’) and Jot dt’q2(ro(t’), t’) 
are included in the scaling in order to obtain an equation for G which is devoid of 
coefficients that are functions of t. For the initial data of $3, it is easily verified from 
(26) and (33) that arg z = 0 when t is real and positive. 

To the leading order in B,  equation (14) now reduces to 

G, = -Gr + 4 - 2 [Gill2] 55 

This equation is canonical, in the sense that it is valid near every initial zero for 
small times, provided the location of the initial zero is not too close to the unit circle. 
(More precisely, equation (36) is valid up to t = O(B2/7) ,  provided I io(O)[ - 1 + B1I3.) 
The initial conditions imply that Gt(<,O) = <. In order for Gr to match with zog as 
i + io(t), it is necessary that Gt(<,z) - < along sectors in the complex <-plane which 
are directed towards the physical domain. 

Tanveer (1993) has analysed equation (36) with the given initial data and asymptotic 
boundary condition over several distinct ranges in z and 4. For each range, we 
summarize the important features. 

( i )  z 4 1 (i.e. t 4 B 2 / 7 ) :  For this range of time, there is an asymptotic similarity 
solution to (36) which contains singularities of the form 

Gt - 4 z ) “  - 5p(z)l-4/3.  (37) 

The location of a given singularity satisfies t P ( z )  = z - ypz2/9, where q p  marks the 
position of the singularity in terms of the similarity variable r]  = ( < - ~ ) / z ~ / ~ .  Heuristic 
arguments suggest that there are infinitely many such singularities. Thus, a collection 
of -4/3 singularities in zc is formed; initially, each of these coincides with io(0). 
However, the singularities move away from this point for z > 0. 

(i i)  z = O(1) (i.e. t = O(B2l7)):  When z = 0(1), the asymptotic ordering which leads 
to the similarity solution in stage (i) breaks down. To continue, it is necessary to solve 
(36) with the given initial condition and matching condition in the complex <-plane 
along time-dependent contours in 4 (required to make the problem well-posed). This 
appears to be an involved calculation, and is not attempted here. 

(iii) z +  1 (i.e. B2/7 4 t  4 l), with 151 4 7 :  The nature of the solution cannot be 
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determined with certainty in this range of time, since it depends on the solution at 
z = 0(1), which is unknown. One possibility is that, for 151 Q z, the function Gg(<,z) 
equilibriates to the steady-state solution of (36). This is plausible, since rewriting 
the outer perturbation expansion in the inner variables (for 1 Q 141 Q z) causes the 
z dependence to disappear at the same order as it does in the inner solution. 
However, this is not the case when 5 - z = 0(1), since there is a singularity of the 
outer perturbation expansion at 5 = z corresponding to the daughter singularity at 

(iv) z + 1, with 5 - z = O(1): When 5 - z = 0(1)  there is an asymptotic similarity 
solution that again contains -4/3 singularities, i.e. Gt - K ( z ) ( t  - 4q(z))-4/3 for z + 1 
and for 5 sufficiently close to {,(z) = ~ ~ z - ' / ~ + z .  Here p q  is the location of a singularity 
in the similarity variable p = (5 - z)/z-'16. In terms of < and z l ,  we have 

(38) 

(39) 

= <d(t). 

Zd5, t )  - mi - i,(t))-4/3 

1cq(t)  - [ d ( t ) l  = O(B' /3)  

where 

and R(t) = O(B4I9). Equation (39) follows from substituting of tO(z) = pqz-'I6 + z 
into the first relation of (35) and using the fact that [ d  = cO + B2/7k1z. Assuming 
that the scalings in (38) and (39) hold even for t = 0(1), then the -4/3 singularities 
are clustered about a B'13-sized region around [d(t), the daughter singularity in the 
outer perturbation expansion. This is important for our purposes, since the B1l3 scale 
around a daughter singularity gives the size of inner region where (zl  - z:l is O(1). 

Unfortunately, we cannot verify whether the similarity solution in stage (iv) is the 
relevant solution without knowing stage (ii), i.e. the z = 0(1) solution. However, 
we do point out that the numerical calculations of $5 show behaviour that is not 
inconsistent with the scenarios given in stages 3 and 4. 

For the channel initial condition corresponding to (27) with I.  < 1/2, figure 2 
illustrates the different stages in the evolution of the singularity clusters. Stages (i)- 
(iv) described above are shown schematically in part (a) ,  which depicts the separation 
of the singularity cluster around [d(t) from the inner region around lo(t) .  Parts (b )  
and (c) of the figure are described below. We note that a similar diagram holds for 
A > 1/2, except the entire process now occurs near zeros which lie on the real <-axis, 
rather than the imaginary c-line. For the radial initial condition corresponding to 
(22), each of the three initial zeros of zr gives rise to an analogous process. 

4.2. Inner equations near a daughter singularity 
For t = 0(1),  the daughter singularity <d(t) is clearly at O(1) distance from [ ~ ( t )  
(figure 2b). Consequently, the zero-surface-tension solution Z O ~  (<, t )  is non-zero and 
regular near cd(t). However, the outer asymptotic expansion breaks down at < d ( t ) .  

It is therefore useful to also consider inner equations valid in a neighbourhood of 
cd(t). For this inner region, the appropriate choice of scaled variables is found to be 

= ([ - 5d(t))/B1I3 and Q(F, t )  = (zc - ZO[(<d(t), t ) ) ;  these scales are depicted in figure 
2(b).t An inner equation for Q(Z,t)  can then be obtained under the assumption that 
the distance of the daughter singularity [ d ( t )  from = 1 satisfies 151-1 + B1/3, so that 
it is consistent to approximate the global integral terms 41, q 2 , .  . . etc. by ql0, q20, .  . . . 

t From (14), it might appear that the inner variables should be chosen as f = (c - cd(t))/B'/3 
and Q(4 ,  t )  = (zi - zoC(cd(t), t ) ) /B1l6,  where Q(4, t )  is required to match to the second term on the 
right-hand side of (19). However, for z = O(1) this choice is inconsistent with the relations (38),(39) 
and with the numerics of $5, which show that zc - zo[([d(t), t )  is O( 1) for [ near [ d .  
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z.= 0 (4 t = o(~2’7) 

Daughter singularity 

t=O( l )  0 

FIGURE 2. Diagram summarizing the relevant time and space scales in the evolution of a daughter 
singularity: (a) creation; ( b )  motion toward = 1 (showing the break-up of 
the cluster into smaller subclusters). The half disk at the bottom of the figure represents the upper 
half of = 1. 

= 1; (c) ‘impact’ on 

The reader is referred to Tanveer (1993, equation (7.4)) for the specific form of this 
inner equation. 

We now present new results which describe the stage where the distance of the 
‘outer’ singularity satisfies 1{d(t)l - 1 - O ( w 3 ) .  At this time the edge of the daughter 
singularity cluster is in the proximity of the unit disk (this is the early portion in figure 
2(c), where the singularity cluster is intact), and hence the leading-order inner equation 
for Q(Z, t )  breaks down. We remark that this stage does not occur in O( 1)  time for 
initial conditions where the daughter singularity motion is shielded by the motion of 
other singularities, as is the case for the channel initial condition corresponding to 
(27) with A > 1/2.  

= 1, it is convenient to 
consider the spatial variable v defined by { = ei”. Introduce the scaled variables 

When the daughter singularity is within O(B’l3) of 

where vd( t )  = arg c d ( t ) .  In the specific problems we consider vd(t) is constant due 
to symmetry. The spatial scale is inherited from the previous stage of analysis, 
and reflects the notion that the -4/3 singularities are clustered about a B’/3-sized 
region surrounding the daughter singularity. The O(1) scale for zC is selected by the 
requirement that it match to the zero-surface-tension solution as x + fa. The time 
scale is then the only distinguished scale. We remark that these inner scales are 
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unaffected by the details of the hypotheses made in stages (iii) and (iv) of 54.1, as 
long as condition (39) holds. 

In terms of the rescaled variables, the dynamic condition (7) becomes 

o = B2l3 Q ( x ,  T )  (41) 

where 

Here 2 is the Hilbert transform, defined as the principal value integral 

The kinematic equation (6) gives an evolution equation for R: 

where we have used the fact that dvd/dt = 0, which holds for the symmetric initial 
value problems considered here. 

To leading order, the evolution equation (42) becomes 

Interestingly enough, curvature terms do not appear at the leading-order, and equation 
(43) is therefore identical to the leading-order part of the zero-surface-tension equation 
((8), with B = O), once it is rewritten in terms of the rescaled variables. However, the 
solution to this inner equation differs from the zero-surface-tension solution zoc by 
O( 1) because the inner region inherits the cluster of -4/3 singularities around [ d ( t ) .  

The creation of singularities near an initial zero due to surface tension effects should 
now begin to be felt on the physical interface. 

An equation analogous to (43) appears in the study of dendritic crystal growth. 
In that context, several relevant facts have been uncovered about the dynamics of 
singularities under (43) (Kunka, Foster & Tanveer 1996). In particular, for T + 1 it has 
been shown that singularities initially at O( 1) distance from the real X-axis approach 
it like c * / T ' / ~ ,  where c1 is a constant, while the real-X location of singularities goes 
asymptotically like *c2 T'/* for constant c2. Thus, the daughter singularity cluster 
spreads out over the real X-direction, but gets compressed in the Im x direction 
(see figure 2c). For initial value problems such as the ones considered here, there 
is symmetry about Arg [ = Arg [ d  and so the line Re x = 0 acts as a separatrix: 
singularities to the left of this line will advect to the left, and vice versa. This behaviour 
has been demonstrated analytically for a cluster of pole singularities advecting toward 
a point of symmetry (Kunka et al. 1996). Using the method of Baker et al. (1995), 
similar behaviour has been numerically observed for branch point singularities. 

Using this information, it is interesting to consider the deformation of the singu- 
larity cluster at the stage when the surface tension term becomes 0(1) in size. This 
deformation will later be quantified in the numerical calculations. From a rescaling 
of X, it is clear that the surface tension term B1/3 Im Ox reaches 0(1) when the 
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singularities comprising the cluster are within O(B'/ ' )  of the real X-axis. Since each 
singularity moves toward Im x = 0 like c ~ / T ' / ~ ,  this distance is reached in a scaled 
time T = O(B-'i3),  which corresponds to an actual time t - td = O(1). During this 
span the cluster disperses over a real-X region of size O(B-'/'), corresponding to 
a v interval of size O(B'/') (shown in the late stage in figure 2c). The numerical 
calculations of $5 suggest that, by this time, the singularity cluster has broken up into 
several subclusters. 

At this point, the cluster of singularities within the original daughter singularity 
have dispersed enough so that the daughter singularity itself no longer exists in a well- 
defined form. Beyond this time, the analytical scaling results are not very revealing. 
They suggest that there are multiple subclusters with size scaling like O(B' /2)  in the v 
variable; each of these advects with O(1) speed along the unit circle towards [ = &l, 
which (in the case of Saffman finger initial data) corresponds to the tails of the 
finger. The 0(B ' I2)  size of the smallest expected length scale can also be obtained 
from a simple physical argument based on the linear dispersion relation of a near 
planar interface. After the singularity structures have moved towards the finger tails, 
the finger shape away from the tails evolves under (43) like a a zero-surface-tension 
solution, but one that is different from the zero-surface-tension solution we started 
with. 

5. Numerical results 
In this section we report the results of B > 0 numerical computations performed 

directly in the physical domain, using initial data corresponding to the exact B = 0 
solutions described in $3. For each initial value problem, calculations are made for 
a sequence of decreasing B, and the results are compared with the known B = 0 
solutions. The computations are used to reconcile the analytically predicted scalings, 
and to observe the physical consequences of daughter singularities as they approach 
the unit circle. 

5.1. Computations in the channel geometry 
For the B = 0 Saffman finger solution (27), the presence of pole singularities near the 
unit circle causes strong variation in the interfacial profile. Since the pole singularities 
are preserved in the outer asymptotic sense when 0 < B 4 1 and t > 0, simulations for 
non-zero B require a discretization that can properly resolve the indentations produced 
on the interface. We satisfy this requirement by employing a boundary integral method 
in which the interface is parameterized in terms of an equal-arclength variable a. More 
precisely, a has the property that if s measures arclength along the interface, then 
s,(a, t )  is independent of a, and depends only on time. This kind of parameterization is 
attractive for a second reason: using it, Hou, Lowengrub & Shelley (1994) have been 
able to formulate a method that deals with the stiffness of the evolution equations 
in a particularly efficient manner. Their method relies on the use of the interface's 
tangent angle O(a,t) and its length L(t) ,  rather than its x and y positions, as the 
dynamical variables. For the channel geometry, O(a, t )  is a periodic function of a since 
the effect of the sidewalls is equivalent to a periodic array of fingers. The equations 
of motion for O and L are then reformulated, so that components of the high-order 
terms which are dominant at small scales are separated from the other terms, in 
such a way that they appear linearly (with constant coefficients). Then an implicit 
time integration method such as Crank-Nicholson, or a linear propagator method, 
can be applied in a straightforward manner. We use their algorithm in conjunction 
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FIGURE 3. Evolution of a finger using an initial condition of the form (27) with 1 = 1/3 and 
iS (O)  = 1.5. The solid curves correspond to B values (a)  0.01; ( b )  0.0025; (c) 0.001; (d) 0.0005. The 
dashed profiles show the exact B = 0 solution. Here, the filter level is The time difference 
A? between profiles is 0.3, with the following exceptions: A? = 0.1 for the last interval in (c), and 
A? = 0.2 and 0.1 for the last two intervals in (d). 

with a linear propagator method which is second order in time. Spatial discretizations 
are chosen to be spectrally accurate. We refer the reader to Hou et al. (1994) for a 
detailed description of the method. 

For each calculation that we perform, a sufficient number of discretization points 
are used so that all Fourier modes of 0(a, t) with amplitude exceeding round-off error 
are well resolved. For small values of surface tension, spectral filtering (Krasny 1986) 
is employed to prevent the spurious growth of short-wavelength modes generated 
by round-off error. As soon as the magnitude of the highest-wavenumber coefficient 
exceeds the filter level, the number of modes is doubled, with the additional modes 
given an initial amplitude of zero. The time step At is decreased until there are no 
detectable differences in the solution within plotting accuracy, nor any significant 
differences in other quantities of interest. In a typical run, we begin with 512 points 
and use a time step of At = 0.0025.n-'. The factor of n-l is a consequence of a scale 
change that is required for the numerically computed values to conform to the non- 
dimensionalization used here for the channel geometry. For convenience, numerical 
values in this subsection will be specified in terms of the scaled variables 

T = z t ;  B = n 2 B .  

Figure 3 shows the interfacial profiles produced by Saffman finger initial data of 
the form (27), with i = 1/3, [,(O) = 1.5 and d(0) = 0. These particular values for A 
and [,(O) are merely chosen to be representative; other 0 < il < 1/2 and 1 < [,(O) 
lead to qualitatively similar results. Solutions are shown for a sequence of decreasing 
B,  with the B = 0 exact solution plotted for comparison. The filter level is set to 
10-13. The theoretical daughter singularity impact time corresponding to these data, 
obtained by the procedure described in $3, is & = 0.757. In the calculation with the 
largest value of surface tension (figure 3a), the B = 0 and B > 0 solutions show good 
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FIGURE 4. Comparison of the computed fingers (solid curves) for the initial condition s f  figure 3 
with the corresponding steady state shape, given by (27),(34) in the limit t -+ s. (a) B = 0.0025 
solution, shown at time i = 3.34. The filter level for the calculation is ( b )  B = 0.001 solution, 
shown at time i = 2.48. Here the filter level is set to (using 128-bit arithemetic) to avoid the 
branching at the fingertip which is evident in figure 3c. 

agreement until approximately the fourth curve shown (corresponding to f = 0.9), 
after which the non-zero-surface-tension solution smoothly widens. Eventually, the 
solution approaches the selected steady finger shape (see figure 4), with a relative 
width A0 given by the formula (34). When B is reduced by a factor of 4 (figure 3b), 
similar behaviour is observed, with the exception that the widening process appears 
to occur somewhat more abruptly. This is most easily seen by comparing the sides of 
the fingers in figures 3a and 3b. As B is further reduced (figures 3c and 3 4 ,  this trend 
continues: the B = 0 and B > 0 solutions agree up until approximately the fourth 
curve (? = 0.9), after which the non-zero-surface-tension solution widens in an even 
more abrupt manner. Our objective is to accurately measure, in the limit B + 0, the 
time at which the B = 0 and B > 0 solutions ‘first’ differ, as well as the time it takes 
for the B > 0 solution to widen into the selected steady shape. 

Unfortunately, for the smaller values of B considered in figures 3(c) and 3(d), the 
solution develops branching at the tip of the finger before it can fully widen into the 
selected steady shape. It is easily seen that the branching is due to round-off-induced 
perturbations (i.e. noise) in the high-wavenumber modes, which quickly grow and 
appear as ripples in the solution. This is at once verified by redoing the computations 
in 128-bit arithmetic (e.g. double precision arithmetic on a Cray YMP), whereupon 
the onset of interfacial oscillations is delayed. The reason is that the use of a higher 
machine precision introduces the spurious perturbations at a lower amplitude, and 
reduces the noise-induced error. More generally, one can check for the presence of 
noise effects in a computed solution by redoing the computation with perturbed initial 
data of the form 

k=M+1 

where E is slightly larger than the filter level. At times for which the two compu- 
tations differ, perturbations at the size of machine round-off have grown enough to 
contaminate the results. An example of this procedure is given in figure 5,  in which 
the B = lop3 computation of figure 3(c) is recomputed using perturbed initial data 
of the form (44), with M = 27 and E = 1 x 10-l2. The two solutions agree well until 
the time f = 2.1, but soon after this the effects of the perturbations are evident. We 
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FIGURE 5. Comparison of the B = 0.001 computation in figure 3c (solid line) and a solution with 
perturbed data of the form (44) (dashed-line). We choose E = 1 x 10-'* and M = 27. The time 
difference A? between profiles is 0.3, except for the last two curves, where it is 0.1. Up to time 
2 = 2.1, the two solutions plot on top of each other. 

X 

note that a similar procedure was used by Dai & Shelley (1994) in their examination 
of branching in the radial geometry. 

The presence of such noise can adversely affect the desired comparison be- 
tween asymptotics and numerics. We elaborate this point further. If terms like 
a,,(t)ln( 1 - l2 / [ ; ( t ) )  are added to (27) (corresponding to additional singularities), 
then for la,(O)l Q 1 there will be no significant change in the initial interfacial shape. 
This amounts to adding noise to the data. However, this addition changes the initial 
condition in the complex plane and significantly affects the interface shape at later 
times, when iln(t)l + 1. To distinguish the dynamics that are inherent in the specified 
complex initial conditions from those due to noise, we use to the following procedure : 

(i) Each computation is performed twice: once in 64-bit arithmetic with a filter 
level of As long 
as these calculations agree to some prescribed tolerance, noise effects are negligible. 
Unless otherwise noted, all figures show results for the filter level computations. 

(ii) For values of B and times in which the above calculations differ, we perform a 
second 128-bit computation using perturbed data of the form (44). The perturbation 
size E is chosen as 10-100 times the filter level, and M is set large enough to at least 
perturb all of the modes in the initial data which are above the filter level. As long as 
the two 128-bit calculations do not differ, they will be considered to be free of noise 
effects. In situations for which the two calculations differ measurably, error estimates 
will be included in relevant plots to give some indication of the possible influence of 
noise. 

(iii) In many cases the 128-bit calculations were also repeated with a slightly 
higher filter level. This is somewhat analogous to reperforming the calculations with 
perturbed data. Again, as long as the calculations agree, noise effects are deemed 
absent. 

We now discuss our measurement of the onset time for deviations between the 
B = 0 and B > 0 solutions. The strategy used is to compare the tip speed of the 
B = 0 solution to that for solutions with B > 0. This is done for a decreasing 

and once in 128-bit arithmetic with a filter level of 
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sequence of B in the interval [lop6, lop3]. The time at which the B = 0 and B > 0 
quantities differ by a prescribed amount then provides a measure of the onset time 
for that particular value of B. Unfortunately, for B < 1.0 x lop6, 128-bit arithmetic is 
not sufficient to prevent noise from contaminating the calculations before the desired 
onset time. Therefore, the results need to be extrapolated to B + 0. The outcome of 
this extrapolation will be checked against the predicted daughter singularity impact 
time. We have found that tip speed provides an adequate measure of the onset time, 
since the daughter singularity in the upper half-plane moves along the imaginary 
axis and impinges upon the unit disk at = i, which corresponds to the fingertip. In 
addition, it is easy to continuously monitor tip quantities during a calculation, whereas 
global comparisons of the zero- and non-zero-surface-tension solutions are difficult 
to obtain owing to the different parameterizations of these solutions. Although it is 
possible to convert from the equal-arclength parameterization to the conformal map 
parameterization at any given time in the evolution, this is difficult to do accurately 
for deformed interfaces such as those considered here. In any case, we have found the 
tip quantities to be sufficient for our present purposes.? Later, in the radial geometry, 
global comparisons between the B = 0 and B > 0 solutions will be obtained and 
used to corroborate many of the asymptotically predicted scalings. 

An expression for the tip speed is obtained by evaluating equation (8) at v = n/2. 
Note that H ( n / 2 ,  t )  is zero from symmetry. Consequently, the difference between the 
B > 0 and B = 0 tip speeds can be written as 

Define t, to be the time required for the two tip speeds in (45) to differ by p in 
magnitude. According to asymptotic theory (specifically, see the discussion following 
equation (43)) the right-hand side of (45) should reach 0(1) in magnitude when the 
edge of the O(B' /3) -  sized daughter singularity region reaches the unit disk, i.e. when 
l ( ' d ( t ) l  - 1 = O(B'i3)  (figure 2c). This implies that t ,  will vary linearly with B'/3 in the 
limit B + 0, assuming that p is small enough so that only the leading edge of the 
daughter singularity cluster has reached the unit disk at the time t,, i.e. the cluster 
has not yet begun to advect around ]('I = 1. 

Figure 6 shows a plot of fp versus B1l3, for p = 0.0005, 0.001, 0.002,0.005, and 0.01. 
As expected, for each value of p that is sufficiently small, the marker points fall on a 
line which intersects the B = 0 axis near the daughter singularity impact time. Linear 
extrapolation of the four lower curves to B = 0 (using the two leftmost points on each 
curve) gives limiting onset times f,(B + 0) = 0.762+0.005, 0.785f0.005, 0.776+0.005 
and 0.753 + 0.01 for p = 0.0005, 0.001, 0.002, and 0.005, respectively. These values 
agree extremely well with the predicted daughter singularity impact time fd = 0.757, 
shown as a half-cross in the figure. The error intervals in the onset times represent 
the estimated influence of noise. These are obtained by comparing values of f, for 
perturbed data of the form (44) (with 6 set to to those for the unperturbed 
data. All other error intervals reported in this subsection are obtained similarly. For 
the range of B and p shown, the f, positions of the marker points change by less 

t We have also numerically obtained the conformal map solution z(v, t) using a method described 
in 45.2. In addition to providing a useful check on the present method, this solution can be used to 
obtain global comparisons between z(v, t )  and the zero-surface-tension solution zg(v, t ) ,  although for 
a narrow range of B. The results are completely consistent with those obtained using tip quantities. 
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FIGURE 6. The time f p  required for a deviation of size p between the B > 0 and B = 0 tip 
speeds, plotted versus B'/3 .  We use the initial condition of figure 3. The filter level is From 
top to bottom, p = 0.01, 0.005, 0.002, 0.001, and 0.0005. The theoretical daughter singularity 
impact time is marked by a half-cross on the B = 0 axis. Linear extrapolation of the four 
lower curves to B = 0 (using the two leftmost points on each curve) leads to limiting values 
f p ( B  + 0) = 0.762f0.005, 0.785f0.005, 0.776f0.005 and 0.753f0.01 for p = 0.0005, 0.001, 0.002, 
and 0.005, respectively. The error intervals gauge the variation in the positions of the B = 0 
intercepts when perturbed data of the form (44) (with e = are used. 

than 0.003 when the perturbed data are used. However, for a given p this variation 
increases quickly when B is decreased below the values shown in the figure. 

Note that there is some flattening of the large-p curves for small values of B. 
Although part of this can be attributed to noise effects, the bulk of the flattening is 
likely due to the advection of the daughter singularity cluster about the unit disk. 
This can occur before ?, is reached when p is sufficiently large and B is small enough. 
In this case, the p-sized deviation no longer occurs when the edge of the daughter 
singularity cluster reaches the unit disk, but rather occurs later, after the cluster has 
distorted. Thus, we do not expect a clear linear relationship between t, and B1/3 for 
larger values of p .  

These details aside, it is clear from figure 6 that the curves corresponding to various 
values of p approach each other with decreasing B. Thus, the interval over which 
the zero- and non-zero-surface-tension solutions begin to veer away from each other 
becomes more localized in time as B -+ 0. Furthermore, the location of this interval 
is consistent with the predicted daughter singularity impact time. 

A more stringent check of the B'l3 spatial scale for the daughter singularity cluster 
is obtained by considering a log-log plot of & - f, versus B,  for various values of 
p .  This is shown in figure 7 .  Only small values of p are considered, to guarantee 
that the daughter singularity is not significantly distorted due to advection around 
the unit disk at the time ?,. The curves in the figure indicate a linear relationship 
between & - ?, and B", where a is determined by the slopes. The slope of each curve, 
computed using the two smallest-B points, is indicated in the figure. These values 
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FIGURE 7. Log-log plot of fd - fp versus B. The solid curves correspond to (top to bottom) 
p = 0.0005, 0.001, 0.002, and 0.005. The dashed line exhibits the theoretically predicted slope of 
1/3. The error bars are obtained by comparing the results for perturbed initial data of the form 
(44) (with F = to those for unperturbed data. The slope of a line through the last two points 
on each curve is indicated in the figure, along with an error interval showing the variation in each 
slope when perturbed data are used. 

compare well with the theoretically predicted slope of 1/3, which is exhibited by the 
dashed line in the figure. The small error bars on the left side of the figure show how 
the plotted values change when the perturbed data are used. The figure only includes 
those values of B for which this variation is not too large. 

The tip speed is also useful for quantifying the time required for the finger to 
eventually fatten into its selected steady-state width /zo(B). In the time-dependent 
problem the width of the finger is not a uniquely defined quantity as it varies along 
the length of the channel. To get around this problem, we define the instantaneous 
‘width’ of the finger to be the reciprocal of the tip speed, i.e. 

This definition is motivated by the relation (29), from which it follows that limt+m A(t) = 

AO. 
Figure 8 shows a plot of the instantaneous width A ( t )  versus time, for a decreasing 

sequence of B. The B = 0 width is also plotted, and the daughter singularity impact 
time & is indicated by a cross placed on this curve. The B = 0.0001 curve, marked E, 
is shown only up to time f = 0.91, since noise effects become prominent soon after 
that time. To the left of the figure it is seen that, as B is decreased, the non-zero- 
surface-tension width becomes increasingly more faithful to the zero-surface-tension 
width for times satisfying t < t d .  Shortly after the time td, the B > 0 curves suddenly 
veer in a direction corresponding to the fattening of the finger. The trend of the 
curves provides a graphic indication that the B + 0 dynamics approaches the B = 0 
dynamics when t < td, but drastically differs for t > td. At the far right of the plot, 
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FIGURE 8. Plot of the width A versus 2, for a decreasing sequence of B. The curves correspond to 
B values 0.01 (curve A), 0.005 (B), 0.0025 (C), 0.001 (D), 0.0001 (E), and 0 (F). The theoretical 
daughter singularity impact time is indicated by the x placed on the B = 0 curve. Curve E is 
truncated before noise effects become prominent. 

each curve approaches the steady-state width corresponding to the given value of B,  
i.e. A( t )  + &(B)  where &(B)  is given by (34). From the figure, it is apparent that 
once the curve starts to veer, the rate at which the instantaneous width approaches 
&(B)  actually increases slightly as B is made smaller. This is most readily apparent 
during the time interval 0.8 < t < 1.5. 

The time required for the finger to widen can be further quantified by considering 
the ratio 

where &(O) = 1/3 is the steady-state width of the B = 0 solution. An example 
of the correspondence between this ratio and the actual degree to which the time- 
dependent and steady-state shapes match is provided by figure 4: the profile in 
figure 4a corresponds to 6 = 1.1 x lop2, whereas that in figure 4b corresponds to 
6 = 1.7 x lo-*. Now, consider the time t ,  required for 6 to reach the value w. In figure 
9, we plot ?, versus B for w = 0.1,0.05 and 0.02. Since relatively long runs must be 
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FIGURE 9. The time iw required for the relative difference 6 between the steady and time-dependent 
widths to reach a value w ,  plotted versus B .  The curves correspond to (top to bottom) w = 0.02, 0.05, 
and 0.1. 

performed to obtain data for the plot, B cannot be taken too small, or noise effects 
will contaminate the results. Despite this, the range of B we do consider is sufficient 
to suggest that the time to widen decreases slightly as B is made smaller. Our data 
lead us to conclude that the daughter singularity produces the transition from an 
arbitrary thin-finger (0 < I I  < 1/2) solution to one with a steady width determined 
by (34) in 0(1) time for B 4 1. 

Other values of I I  < 1/2 lead to results that are qualitatively similar to those for 
I I  = 1/3. In general, for data of the form (27) with fixed cS(O) ,  smaller values of ,I 
produce daughter singularities that are initially closer to the unit disk and which have 
larger values of Iql(cd(t))l. Thus, the effects of the daughter singularity (including the 
finger widening) occur sooner. 

It is interesting to contrast the above results to those obtained for 'fat' finger initial 
data with 1/2 < A < 1. For I I  in this range and B = 0, the zeros of zc lie on the real 
line at positions given by (31). As discussed in 53, the daughter singularities in this 
case are prevented from reaching \ [ I  = 1 by the poles +[,(t), which only approach 

1 exponentially. Therefore, the O(B' /3)  inner neighbourhood around each daughter 
singularity will not affect the dynamics on l [ l  = 1, at least until t = 0(-ln B). Before 
this time, we expect the interface to be uninfluenced by the presence of the daughter 
singularities. 

Computational evidence supporting this contention is difficult to obtain, since 
long-time computation requires us to suppress initial round-off errors below machine 
precision. However, for the period of time over which noise effects can be suppressed, 
numerical simulations give results that are consistent with this scenario. For example, 
figure 10 exhibits the results of a simulation with I I  = 2/3 Saffman finger initial data, 
for [JO) = 1.5 and B = 0.0025. The B = 0 and B > 0 solutions plot on top of each 
other until late stages of the evolution, when noise effects are felt. The difference in 
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FIGURE 10. Evolution of a finger using initial data of the form (27) with I. = 2/3 and [,(0) = 1.5. 
The two sets of curves correspond to the B = 0.0025 computed solution (solid curves) and the 
B = 0 exact solution (dashed curves). Here, the filter level is The time difference A? between 
profiles is 0.3. The two solutions plot on top of each other until approximately ? = 2.7, at which 
time noise effects cause branching in the computed solution. 

X 

tip curvature between the two solutions stays below in magnitude for f < 2.02. It 
may at first appear that this result is inconsistent with the B > 0 steady-state theory. 
However, the steady-state selection result (34) shows that for small B,  there exists 
a steady solution with width An(B) close to an arbitrary width il E (1/2,1), as long 
as n is sufficiently large. This steady state is linearly unstable to tip-splitting modes, 
although suppressing noise in the computation apparently prevents the instability 
from being activated. Thus, the finger of width il = 2/3 can be achieved over a long 
period of time. 

5.2. Computations for  the radial geometry 
We turn now to the radial geometry and consider initial data corresponding to 
(22), which contains three zeros of zt in the region exterior to l [ l  = 1. Long-time 
computations of the B > 0 evolution for these initial data, using the method of Hou et 
al. (1995), show that the B = 0 and B > 0 solutions differ significantly on the parts of 
the interface where the zero-surface-tension solution eventually forms a cusp (figure 
11). Figure l l ( a )  compares the early stages of evolution between the exact B = 0 
solution and the solution for B = 0.00025. The deviation between the two solutions 
is qualitatively similar in appearance to that for the channel geometry, and occurs 
before the curvature of the interface has become very large. The zero-surface-tension 
solution goes on to form cusps at locations corresponding to the vertices of the 
triangle. (For the initial data in figure 11 this occurs at time t, = 2.37). In contrast, 
each cusp is replaced by a growing bulb of air in the B = 0.00025 solution. The 
bulbs are susceptible to noise-induced perturbations and eventually develop fingers 
and other branching structures, as seen in figure ll(b). As in the channel geometry, 
we perform a sequence of simulations for decreasing B to show that the onset of 
deviations between the B = 0 and B > 0 solutions is related to the impact of 
a daughter singularity cluster on the unit disk. We also use the computations to 
examine several of the predicted scalings given in $4. 



Singular eflects of surface tension in Hele-Shaw cells 

3 

2 

1 

0 

-1 

-2 

-3 

I I I I I 

(4 

~3 -2 -1 0 1 2 3 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

I I I I I I I 

I I I I I I I 

227 

FIGURE 11. (a) Evolution of a Hele-Shaw ‘bubble’ using three-zero initial data of the form (22) 
with cO(O) = 1.5. We compare the B = 0.00025 solution (shown as solid curves) with the exact 
B = 0 solution (22) (dashed curves). In each solution, the time difference between profiles is 0.3. 
( b )  Evolution of the B = 0.00025 Hele-Shaw bubble in (a)  over a long time. The time difference 
between profiles is 0.3 up to t = 0.9, after which it is 0.305. 
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For the kind of initial data currently under consideration, a discretization based 
on the conformal map parameterization is well suited to resolving the interface. This 
is clearly the case for the B = 0 solution, in which only two non-zero Fourier modes 
are present in the solution for t 2 0 when it is written in the conformal map frame. 
For small non-zero B this is no longer true; nevertheless, modes B(k)e&'' with k 2 3 
are initially only weakly generated, and at early times in the evolution the conformal 
map parameterization will require many fewer modes to resolve the interface than 
one based on an equal-arclength or Lagrangian parameterization. 

= 1 
using a pseudospectral method similar to that employed by Dai et al. (1991). All 
derivatives and Hilbert transforms are computed using the discrete Fourier transform. 
Note that the analyticity of f(C,t) = z , ( [ , t )  + a( t ) / [  for 151 < 1 implies that only 
positive-wavenumber modes such as f(k)e&" with k > 0 will be present in the 
solution. Care must be taken to avoid the spurious generation of modes with negative 
wavenumber, since these are unstable and quickly grow. We prevent this occurrence 
by setting modes with negative wavenumber to zero at the end of each time step. 
A standard fourth-order Adams predictor-corrector method with fixed step size is 
used to obtain the time update. The threefold symmetry is incorporated into the 
simulations in order to speed up the calculations. Noise effects are characterized 
using the same procedures as in the channel case. The filter levels for the 64-bit 
and 128-bit calculations are also identical to those used earlier. All of the reported 
calculations correspond to 128-bit runs with a filter level. As in the channel 
computations, the number of modes is doubled when the magnitude of the highest k 
coefficient exceeds the filter level. Unfortunately, owing to the stiffness of the equations 
of motion and our use of an explicit scheme, the time step typically must be reduced 
by a factor of 8 when the number of modes is doubled. This limits the feasibility 
of this method for long-time computations. Nevertheless, the method is sufficient for 
our purposes here. In a typical run, we begin with N = 256 points (discretizing 1/3 
of the interface) and a time step of At = 0.0005; each run is stopped when N reaches 
2048. As usual, it is checked that reperforming the calculations with a smaller time 
step does not affect the reported results. 

We first consider the onset time for deviations between the B = 0 and B > 0 
solutions for initial data chosen in accordance with (22), with io(0) = 2.0 and 
A(0) = 1.0. Unless otherwise noted, all of the subsequent computations employ 
these values. For these initial data, the daughter singularity i d ( t )  reaches l [ l  = 1 at 
t d  = 1.101, well before the time t ,  = 15.504 at which io ( t )  reaches the unit disk in the 
corresponding zero-surface-tension solution. Thus, at the daughter singularity impact 
time, the interface is nowhere near cusp formation, and the curvature of the B = 0 
solution is not large. 

The conformal map parameterization utilized in the simulations makes it easy to 
obtain global comparisons between the B = 0 and B > 0 solutions. Let m(t) = 
maxvIz,(v,t) - zOV(v,t)l and define t ,  as the first time at which m(t,) = q. We again 
expect that the effects of the daughter singularity cluster will first be felt around 
the time that its leading edge nears the unit disk, so that the time t ,  should vary 
linearly with B1/3 for sufficiently small q and B. Figure 12 plots t ,  versus B1/3 for 
q = 0.0001, 0.0002, 0.0005, 0.001 and 0.05. The lower curves can be extended to 
smaller B,  since noise effects are less prominent over short times. For small enough 
q,  the marker points exhibit the expected linear behaviour as B tends to zero. Linear 
extrapolation of the four lower curves to B = 0 (using the two leftmost points on each 
curve) gives limiting values of t,(B --+ 0) = 1.140+0.005, 1.153f0.008, 1.169f0.011, 

In our simulations, we solve equation (8) for N equally spaced points on 
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FIGURE 12. The first time t, at which max,/z,(v,t) - zoy(v,t)~ = q,  plotted versus B'I3. Ini- 
tial data of the form (22) are used, with cO(O) = 2.0. The filter level is set to 
From top to bottom, q = 0.05, 0.001, 0.0005, 0.0002, and 0.0001. The theoretical daugh- 
ter singularity impact time is marked by the half-cross. Linear extrapolation of the four 
lower curves to B = 0 (using the two leftmost points on each curve) leads to limit- 
ing values t4(B + 0) = 1.140 f 0.005, 1.153 & 0.008, 1.169 f 0.011 and 1.166 f 0.005 for 
q = 0,0001, 0.0002, 0.0005, and 0.001, respectively (compare with t d  = 1.101). The error inter- 
vals measure the variation in the B = 0 intercepts when the filter level is raised to 

and 1.166 f 0.005 for q = 0.0001, 0.0002, 0.0005, and 0.001 respectively. These values 
agree well with the predicted daughter singularity impact time td = 1.101. The error 
intervals in the onset times are determined by examining the variation in the plotted 
quantities when the filter level is increased from In the problem 
considered here this procedure provides a reliable estimate of the influence of noise 
on the computed values. All other error intervals reported in this subsection are 
generated in a similar fashion. 

As in the channel case, the B1/3 spatial scale for the singularity cluster is checked 
by considering a log-log plot of td - t ,  versus B,  for various values of q. This is shown 
in figure 13. As before, only small values of q are considered. The limiting slope 
of each curve, computed using the two smallest-B points, is indicated in the figure. 
These values are near the predicted slope of 1/3, although they are slightly higher. 
The error bars indicate that, for the values of q considered, the plotted quantities 
change by a relatively small amount when the filter level is raised to This is 
the case so long as B is greater than approximately As B is decreased below 
lop6, our simulations show that the differences between the results for the lopz3 and 

A measurement of the extent of the v interval in which z, differs from ZO, should 
also reveal a linear dependence on B1/3, owing to the O(B1/3) size of the daughter 
singularity cluster. Define sp(t )  to be the largest value of v E [O,n/3] for which 
Izv(v, t )  - ZO,,(V, t)l 3 p .  Thus, 2sp(t)  is the size of the region in which z,  differs from 
zoV, when v is restricted to one of the three symmetric portions of the interface. 

to 

filter levels increase greatly. 
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FIGURE 13. Log-log plot of t d  - t, versus B.  The solid curves correspond to (top to bottom) 
q = 0.0001, 0.0002, and 0.001. The dashed line exhibits the theoretically predicted slope of 1/3. 
Error bars are obtained by comparing results for a filter level of to those for a level of lopz3. 
The slope of a line through the last two points on each curve is indicated in the figure, along with 
an error interval measuring the variation in each slope when the filter level is raised to 

Figure 14 is a log-log plot of sp ( t )  versus B,  for several values of p .  The plots are 
obtained at a fixed scaled time T = -3.4, where T is defined in (40). This value of 
T is large enough for sp(t )  to achieve an ample magnitude (for the range of B and p 
considered), yet small enough so that any advection of the daughter singularity cluster 
around the unit disk prior to T = -3.4 is minimized. Unfortunately, the curves do 
not exhibit a clear linear behaviour for small B but rather show a bit of unevenness. 
It is conceivable that the spatial measurement of the daughter singularity cluster is 
complicated by an internal structure; this possibility is discussed further later in this 
subsection. Despite this, the overall trend of the curves in the figure is more or less 
consistent with the asymptotic prediction. In particular we see that, on average, the 
course of the curves follows that of a line with slope 1/3. 

It is also possible to examine some of the predicted features of later stages in the 
evolution, i.e. after the daughter singularity cluster reaches the unit disk and begins 
to advect around it, possibly causing it to begin to break up (see figure 2c). For 
example, consider the time at which the surface tension term Im 0, reaches a given 
0(1) value. The asymptotic theory suggests that this occurs an 0(1) time after the 
daughter singularity time t d ,  in the limit B -+ 0. Let t ,  be the time required for 
IIm w,I to reach the value r. In figure 15, we show a log-log plot of t ,  - t d  versus B 
for three representative values of r. In order for Im 0, to reach 0(1) in magnitude, 
the calculations must be performed for relatively long times. The desire to prevent 
noise effects from becoming prominent at the later times restricts how small B can 
be taken. Nevertheless, for the smallest values of B and r considered, the slopes of 
the numerically computed curves appear to be approaching zero, as expected. The 
asymptotic theory also suggests that the extent of the region over which Im cr), equals 
0(1) scales like O(B1/6), for fixed time T = ( t  - t d )  (see the discussion at the end of 
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FIGURE 14. Log-log plot of s p ( t )  (the extent in v for which /zy(v,  t )  - zov(v, t ) \  >, p )  versus B ,  at fixed 
scaled time T = -3.4. The curves correspond to (top to bottom) p = 0.00025, 0.0005, 0.001, and 
0.002. Error bars are computed as in figure 13. The dashed lined exhibits the theoretically predicted 
slope of 1/3. 
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FIGURE 15. Log-log plot oft ,  - t d  versus B, where t, is the time required for the magnitude of the 
surface tension term Im w, to reach the value r .  The solid curves correspond to r = 0.005 (upper 
curve), r = 0.0025 (middle curve), and r = 0.001 (lower curve). The slope of a line through the last 
two points on each curve is indicated on the figure. The error bars and the error intervals for the 
slopes are determined as in figure 13. 
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FIGURE 16. Log-log plot of s,(t) (the extent in v for which IIm w,I r )  versus B .  Each solid curve 
corresponds to a fixed value of T = ( t  - t d )  and r .  We show results for 7 = 0.15, r = 0.0001 (upper 
curve); and T = 0.22, r = 0.0005 (lower curve). On each curve, we indicate the slope of a line 
through the two points with B = 0.00005 and B = 0.000025. (These points are used instead of two 
smallest-B points, owing to the potentially large noise induced errors in the B = 0.00001 values for 
the upper two curves). The error bars and the error intervals for the slopes are determined as in 
figure 13. 

34). Define s,(t) to be the largest value of v E [O,z/3]  for which IIm o,I 2 r. A log-log 
plot of s, versus B,  for various combinations of time T and r, is displayed in figure 
16. In each curve, the slope for small B is near 1/6, which is the predicted behaviour 
for sufficiently small B and r. 

There is some evidence to suggest that the daughter singularity breaks up into 
several concentrated subclusters as it approaches the unit disk, as diagrammed in 
figure 2(c). One indication of this behaviour is that ripples which are not due to noise 
effects are observed to form on the interface, much like those seen near the base of 
each bulb of air in figure ll(a). If I C ( V , ~ )  and ico(v,t) denote the B > 0 and B = 0 
curvatures, respectively, then the extent of the rippling is readily apparent in a plot 
of I I C  - icol versus v E [O,n/3] (figure 17). The different curves in the plot correspond 
to lic - icol at different times in the evolution. This plot shows that non-zero surface 
tension introduces localized oscillations in the interface in a region about v = 0. We 
speculate that the oscillations are caused by daughter singularity subclusters which 
disperse along the interface owing to the action of the separatrix located along the 
Re v = 0 line. One indication of this behaviour is that the function sr( t )  does not 
smoothly increase as a function of time (see figure 18), but rather exhibits sharp 
jumps. This suggests that the subclusters which are located closest to v = 0 are the 
first to ‘impinge’ upon the unit disk and influence the physical interface, followed later 
by the subclusters which are the next nearest to v = 0, and so on. Such a scenario 
is sketched in figure 2(c). It is expected that the size of the subclusters will decrease 
with B. This expectation is consistent with the data in figure 18, which show that the 
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FIGURE 17. Plot of I I C  - lcol versus v,  for t = 1.25 to 1.75 in steps of 0.05. We set B = 0.0001. The 
range of v corresponds to one-half of one of the three symmetric portions of the interface. 
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FIGURE 18. Plot of s,(t) versus t - t d ,  for r = 0.001. Surface tension values are B = 0.00025 (+) and 
B = 0.00005 (0) 

jumps in s r ( t )  occur more frequently and are smaller in magnitude for the smaller 
values of B. 

Finally, we remark that we have also computed the effects of small surface tension 
on a second family of exact solutions in the radial geometry, namely one that contains 
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three symmetrically located zeros (as in (22)) plus three symmetrically placed poles. 
Earlier, Dai & Shelley (1994) had numerically investigated small-surface-tension 
effects for a specific initial condition of this type, in which the zeros are radially 
aligned with the poles but are further from the origin. In this case, asymptotic theory 
suggests that the daughter singularities will not impinge upon /[I = 1 in 0(1) time, 
which is consistent with their observations. On the other hand, when the angular 
positions of the zeros and poles are staggered, we observed daughter singularity 
effects at the time t d ,  as predicted by the asymptotics. However, the overall effect on 
the shape was much smaller than for the case of three zeros alone. 

6. Conclusions 
Numerical evidence has been presented to show that a smoothly evolving zero- 

surface-tension solution of the Hele-Shaw equations can be singularly perturbed by 
the presence of arbitrarily small non-zero surface tension in order-one time. The 
numerics support the essential features of an asymptotic theory originally introduced 
by Tanveer (1993) and extended here. The behaviour is explained by the presence of 
localized clusters of singularities (daughter singularities) which are born at each point 
in the complex domain where zor([, t)  = 0. To leading order in B,  and for t = 0(1), 
each singularity in the daughter singularity cluster moves according to (20), i.e. it 
moves as if it were a singularity of the zero-surface-tension solution zo([ , t ) .  Thus, 
the daughter singularity approaches the physical domain in a manner which can be 
predicted from knowing the corresponding zero-surface-tension solution. Once the 
daughter singularity approaches l [ l  = 1, the cluster breaks up and advects towards 
the points of symmetry ([ = f l  in the channel case, for instance). 

The numerical simulations show that the daughter singularity clusters cause large 
interfacial deformations when they come to within an O(B1/3) neighbourhood of 
the unit disk. In this case, the calculations show good agreement with analytically 
predicted scalings. Other situations are found in which the motion of the daughter 
singularity cluster toward the physical domain is impeded by the presence of other 
singularities. When this happens, there is no significant difference between the B = 0 
and 0 < B 4 1 solutions in O( 1) time. 

Our results are particularly interesting for the case of steady finger motion in a 
channel, where the zero-surface-tension equations allow a continuum of steady finger 
solutions of arbitrary finger width. On the other hand, experiments and numerical 
simulations for small surface tension show a unique steady finger solution of a 
given (surface-tension-dependent) width. Our computations show that the daughter 
singularity produces a transition from an arbitrary finger solution to one with the 
selected steady width in O( 1) time for B 4 1. Furthermore, given the analytically 
extended initial data, the onset time of the transition can be easily predicted. However, 
we point out that although the numerical calculations in the physical domain support 
the essential features of the asymptotic theory, such as the creation of a daughter 
singularity and its advection towards the real domain, they are unable to determine if 
the scenario described in stages (ii)-(iv) of $4 is accurate. Indeed, in the scalings that 
have been verified here, only the relation (39) is crucial; it is conceivable that other 
dynamics at t = O(B2/7)  can also lead to (39). 
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